
A Further Note on the Confinement Problem
William E. Boebert

Sandia National Laboratories
Albuquerque, New Mexico

Richard Y. Kain
University of Minnesota
Minneapolis, Minnesota

ABSTRACT

“Confinement, ” in computer systems, is the ability to limit the amount
of damage that can be done by malicious or malhnctioning soffware.
Confinement is a requirement when either security or safety i s a concern.

In this paper we demonstrate why the access control mechanisms of
common operating systems do not constitute a confinement mechanism.
We describe the early confinement mechanism mandated by the Trusted
Computing System Evaluation Criteria and note its shortcomings. We
summarize prior attempts to overcome those shortcomings. We describe
an alternative confinement mechanism called “type enforcement” that
was invented by the authors in 1984 and subsequently implemented in
several secure computers. We show how type enforcement overcomes the
limitations of the early mechanisms and outline its uses, with special
emphasis on the way in which the type enforcement mechanism supports
assurance and safety. We conclude by describing the application of type
enforcement to the problem of confining the actions of “mobile agents,”
which are active agents downloaded to client machines from servers.

INTRODUCTION

Increases in the networking and sharing among computer systems
increases one’s exposure to people desiring unauthorized access to data
stored within the systems. Even before computers were in widespread
use, many organizations developed rules and regulations that served to
limit document access and thus to limit the risk of unauthorized modifica-
tion or revelation of the contents of the documents. A careful analysis
reveals, however, that several of these schemes that have intuitive appeal
are, in fact, inherently flawed.

As they specify systems to be interconnected into the 21st century, con-
temporary users and designers must become aware of these flaws and of
modem approaches to guaranteeing that file access is indeed limited
according to the proscribed policies of the organization. In this paper we
show how type enforcement mechanisms can satisfy many confinement
requirements; in particular, they can be used to build firewalls and to con-
fine the access from applets arriving across the network,

The paper starts with a review of the confinement problem and the mili-
tary classification and access limitation rules, illustrating their positive
and negative aspects. After showing the difficulties and limitations of
minimal access control schemes, we survey implementations of limited
access control schemes. Type enforcement approaches to system specifi-
cation, design and implementation greatly increase the assurance pro-
vided by the system; we show how this important approach has been used
to build operational systems and how it can increase one’s level of assur-
ance that the system does indeed support the organization’s access limita-
tion policies. We also show how type enforcement can be used to confine,
in accordance with local access policies, the activities of mobile agents,
such as applets arriving across the network.

CONFINEMENT

Backgmund

“Confinement,” as used in this paper, is the property of a computer sys-
tem that permits it to limit the actions of programs in execution. It was
first discussed in the early 1970’s [26] , and consideration of confinement

mechanisms was a central concem of research into secure computer sys-
tems, Few, if any, such mechanisms made their way into “mainstream”
operating systems.

The importance of confiiement has been heightened recently with the
advent of “mobile agents” or “applets.” [19] These are objects containing
executable or interpretable commands and state which are transferred
from a server to a client and executed locally at the client. The potential
for abuse or damage as a consequence of malfunction is significant.

The Discretionary Trojan Horse Attack

The need for a confinement mechanism first became apparent when
researchers noted an important inherent limitation of discretionary (or
identity-based) access control mechanisms [3 11. A simple example of
such a mechanism has the following elements:

Each process executing in a system has associated with it the name of
the user on whose behalf it is executing. As we will see later, the “on
behalf of’ relationship can become quite complex; for purposes of
this example, assume a simple multiuser system such as an early
UNIX’ installation. Users log In and spawn processes as a conse-
quence of invoking commands from a shell. The system maintains the
association between the user name and these processes.
Each file on the system has associated with it an access control list.
The entries in the list consist of pairs of the form (name, access right)
where an access right is one or more of a fixed set such as [read,
write, execute].
When a process seeks a particular mode of access to a file (e.g., “open
for read”) the system searches the access control list for an entry cor-
responding to the user on whose behalf the process is executin2. It
then compares the allowed access modes from the access control list
entry with the requested access mode, and proceeds or aborts as
appropriate. Thus if a process executing on behalf of user “Smith”
asked to “open for read” file “foo,” the access control list for “foo”
would be searched for an entry that read at least (S,mith, read). If such
an entry was found, the file would be opened; if no such entry was
found. a well-defmed error response would result.

The above mechanism appears relatively strong, and in particular
appeared to its early implementors as being sufficient to protect data in a
multiuser environment such as VMS, Multics or UNIX. The strength of
the access control mechanism proved illusory, however, as demonstrated
by the following attack:
1. The target of the attack, whom we will call “Smith,” has a file con-

taining valuable data, which we will call “hotstuff.” Smith sets the
access control list for “hotstuff to contain a single entry, reading
(Smith, read/write). This gives the illusion that no other user on the
system can gain access to “hotstuff.”

2. The attacker, who we will call “Drake,” first makes a temporary file
we will call “backpocket.” Drake places two entries in the access con-
trol list for “backpocket:” (Smith, write) and (Drake, read). Drake
does not inform Smith of the existence of this file.

1. UNIX is a registered trademark in the United States and other coun-
tries, licensed exclusively through WOpen Company Ltd.

2. So-called “wildcard” characters can be used to eliminate the need to
denote every allowed user explicitly.

0-7803-3537-6-9/96/$4.00 01 996 IEEE 198

3. Drake then constructs an attractive program, which we will call
“Lure.” Besides its normal function (such as a game or other desirable
utility) the program contains a malicious subset called a “Trojan
Horse? The Trojan Horse has the effect of extracting data from “hot-
stuff’ and copying it to “backpocket.”

4. Drake then contrives to get Smith to invoke Lure, containing the Tro-
jan Horse. At this instant, the Trojan Horse is executing on Smith’s
behalf, and the access control mechanism will therefore permit the
leak to “backpocket” after going through the following actions and
checks:
Trojan Horse: Open “hotstuff for read. Checker: The process exe-
cutes on behalf of Smith, and access control list entry is found (Smith,
reaawrite), so permission is granted.
Trojan Horse: Open “backpocket” for write. Checker: The process
executes on behalf of Smith, and an access control list entry is found
(Smith, write), so permission is granted. “Hotstuff‘ may now be COP-
ied into “backpocket.”
Drake: Open “backpocket” for read. Checker: The process executes

on behalf of Drake, an access control list entry is found (Drake, read),
so permission is granted.

The net effect is thal there has then been a transfer of data from Smith to
Drake in violation of thq intent (but not the effect) of Smith’s access con-
trol list configuration. The transfer occurred for two reasons: the exist-
ence of a mechanism for sharing program text, and the characteristic of
the discretionary access control mechanism that a program in execution
on behalf of an individual inherits the privileges of that individual without
limitation.

The reader is encouraged to study this example until it is fully under-
stood, because the operation of the discretionary Trojan Horse attack is as
basic to understanding the confinement problem as the use of frequency
counts is to the understanding of cryptanalysis.

Introducing mobile agents simply facilitates the invocation of programs
containing the Trojan Horse. For example, Trojan Horses can be embed-
ded in “applets” who!je invocation is an invisible side effect of browsing.
One hopes that browsing appears to be passive and benign with respect to
data files. However, if, as will usually be the case, the browser is operat-
ing on behalf of a user who thinks she is protected by a discretionary
access control mechanism, the “applet” will inherit all the privileges of
that user and be able to examine, modify, or destroy data at will, contrary
to the perceived protection.

MINIMAL MLS CONFINEMENT MECHANISMS

Background

When the limitations of the pure discretionary model became apparent4,
researchers sought other mechanisms to achieve confiement [41]. Since
the bulk of the work was supported by the Department of Defense, the
next set of mechanisms centered on the prevalent concepts of data classi-
fication and personnel clearance.

To support these mechanisms, additional attributes are required. In addi-
tion to the access control list described above, data files, or “objects,” in a
system are assigned a label consisting of two parts: a hierarchical level
and a set of non-hierarchical categories5. These labels were intended to
reflect the classification of the data. The hierarchical level was intended
to reflect the well-known levels of UNCLASSIFIED, CONFIDENTIAL,
SECRET, and TOP SECRET; the non-hierarchical categories were
intended to reflect special classifications for highly segregated data,
where clearance to one such category did not imply clearance to any oth-
ers. (This can be contrasted with hierarchical levels, where a clearance at
the SECRET level implies the right to read CONFIDENTIAL data).

Processes, or “subjects,” were assigned a similarly structured attribute,
which was intended to reflect the clearance of the person on whose behalf
the process was executing.

3 This term was coined by Dan Edwards of NSA.
4 A discussion of formal limitations of discretionary access con-

5. Confusingly, the entire field is often referred to as the “sensi-
trol appears in [23]

tivity level”

An algorithm was developed that used the classification and clearance
attributes to determine the allowed modes of access of a process to an
object [l] [4]. This algorithm was presumed to be implemented in the
“Trusted Computing Base,” or “ T C B [2]. The algorithm was named
“Mandatory Access Control” because it overrode any permissions that
may have been given in the access control list. The most prevalent state-
ment of this algorithm is in the Trusted Computing System Evaluation
Criteria (TCSEC) which is used as a basis for U.S. Government ratings of
system security. The wording below describes the mandatory access con-
trol requirement for class B1 systems; higher classes differ only in detail.

The TCB shall enforce a mandatory access controlpolicy over all sub-
jects and storage objects under its control (e.g., processes,jles, seg-
ments, devices). These subjects and objects shall be assigned sensitivity
labels that are a combination of hierarchical classification levels and
non-hierarchical categories, and the labels shall be used as the basis for
mandatory access control decisions. The TCB shall be able to support iwo
or more such security levels. (See the mandatory access control guide-
lines.) The following requirements shall hold for all accesses between
subjects and objects controlled by the TCB: a subject can read an object
only ifthe hierarchical classification in the subjectk security level is
greater than or equal to the hierarchical classification in the objectk
security level and the non- hierarchical categories in the subjectk secu-
r i v level include all the non-hierarchical categories in the objectb secu-
rity level. A subject can write an object only ifthe hierarchical
classification in the subject k security level is less than or equal to the
hierarchical classification in the objectk security level and all the non-
hierarchical categories in the subjectk security level are included in the
non- hierarchical categories in the objectk security level.

The algorithm is also often referred to as the “MLS model” or “MLS
policy,” for “Multi-Level Security.” We will call this bare-bones algo-
rithm “Minimal MLS”, or MMILS.

We encourage readers to observe how the MMLS algorithm stops the
discretionary Trojan Horse attack described above. Assume that Smith
has assigned a level of UNCLASSIFIEDISMITHS to “hotstuff,” where
“UNCLASSIFIED is the hierarchical level and “SMITHS” is the single
non-hierarchical category used to segregate the data. Assume further that
Drake cannot initiate a process at a level other than UNCLASSIFIED, not
being cleared into the category SMITHS. Note how the Minimal MLS
algorithm prevents a the Trojan Horse from simultaneously being able to
read “hotstuff’ and write into “backpocket” that Drake could read, no
matter whether Smith logs in at UNCLASSIFIED or UNCLASSI-
FIEDISMITHS. A complete explanation appears in [43].

Limits of the MMLS Algorithm

Pipelines: A useful structure that is encountered repeatedly in practical
secure systems design is a “pipeline.” In its simplest form, a pipeline con-
sists of a producer process and a consumer process separated by an inter-
mediate filter or other process whose operation is essential for security.
The processes are connected by files that act as buffers, and some suitable
mechanism for synchronization oireads and writes is imposed. An exam-
ple would be a producer process which is a data preparation subsystem
and a consumer process which is a network manager. The intermediate
process would be a cryptographic transform. The pipeline is structured to
insure that all data is encrypted before it goes out on the network. How-
ever, if this structure could be bypassed, the data could be sent out on the
network as cleartext.

The MMLS algorithm cannot, in and of itself, enforce the pipeline struc-
ture. Any data which is readable by the cryptographic intermediary is also
readable by the network manager. Thus a malfunctioning or malicious
program executing with the privileges of the network manager could
directly access unencrypted data and place it out on the network.

Downgrading: The MMLS Algorithm constrains information flow to
the direction of ever-increasing restrictiveness. Thus data can flow from
UNCLASSIFIED to UNCLASSIFIEDlSMITHS but not the other way.
Acknowledgments and other controlled bidirectional trafic is thereby
restricted, often with severe practical effect. Also, the algorithm does not
permit downgrading of data even after it has been encrypted, thus forbid-
ding one of the most basic uses of cryptography.

Data Integrity: The MMLS algorithm permits processes to write into
files they cannot read. As a consequence, the algorithm in and of itself

199

cannot prevent a Trojan Horse from altering or destroying data6.

impose any control on “execute” access. Thus, in the absence of other
controls, it permits any data file to be executed. It further permits pro-
grams to access datcr unrelated to the program’s stated purpose, thus facil-
itating Trojan Horses.

“On BehalfOf’: The MMLS algorithm requires that the label of each
process be derived from the privileges (clearance) of the person on whose
behalf the process is executing. This requirement is difficult if not impos-
sible to satisfy in a network environment, as opposed to the single, mul-
tiuser processing environment which existed at the time of the algorithm’s
development. In networks it is often quite difficult to determine on whose
behalf a particular action is being taken. Consider a mail transfer agent,
which examines email “envelopes” and makes routing and forwarding
decisions. Is that agent acting on behalf of the local system administrator,
the mail administrator, the sender of the email, the recipient of the email,
or some other person? Useful answers are not easily forthcoming.

The “on behalf of’ requirement, combined with the lack of control of
execute access, does not support forensic studies. Flaws or vulnerabilities
are almost always associated with bodies of program text7 A fundamen-
tal forensic question then is: “What data could this program have
touched?” This question cannot be easily answered when the Minimal
MLS algorithm is in effect, because the access is a function of on whose
behalf the program is being run, not the identity of the program itself.

Augmented MLS

Limitations on Execute: The MMLS algorithm does not, in and of itself,

In the past, many attempts were made to overcome the above limitations
in MMLS. The downgrade problem was recognized in [4], which intro-
duced the concept of “trusted processes.” A trusted process has the spe-
cial privilege of downgrading data; since this privilege is very dangerous,
trusted processes have to be carefully controlled. No control mechanism
was specified in [4], and a variety of ad hoc approaches were developed
as early systems were implemented.

The next limitation that was addressed was the lack of mechanisms to
maintain data integrity. A widely-adopted mechanism is described in 171.
This mechanism involves the assignment of a second attribute, called
“integrity level,” to objects. These levels have a hierarchical level plus
non-hierarchical category structure similar to the sensitivity levels
described above. A second set of rules for access is imposed using the
principles expounded in [4]. A complete description of system architec-
ture using sensitivity levels, integrity levels, and associated rules is given
in [18], which is strongly recommended to anyone wishing to understand
the rationale behind this class of systems.

The other limitations ofMMLS have also been addressed. A mechanism
for controlling execute access is proposed in [35], and a method for mod-
ifying the mechanism of [7] to permit pipelines is proposed in [27].

IMPLEMENTATION OF CONFINEMENT MECHANISMS

There are two ways of implementing of static storage objects that have
arisen in operating system design. The first way, implemented most nota-
bly in the Multics system [5], treats storage as a single homogeneous
name space. Objects are accessed implicitly by referencing the object
name in the body of program text. Another way of describing this is that
all storage in the system appears to programs as local memory.

The second way, implemented most notably in the UNIX system [30],
treats storage as named files. Objects are accessed explicitly by operating
system calls (e.g., -‘open read). Another way of describing this is that
all storage on the system appears to programs as external files.

The “objects as memory” approach yields higher-assurance implemen-
tations of confinement mechanisms because the hardware used to map
global names to process-local addresses (the “memory management unit”
or MMU) can be modified to provide continuous enforcement of the rules
[5] ; since the mechanism resides in a single module, it is easier to con-
vince people of its functionality and conformance to the system’s policy

6 The reader is invited to verify this claim by adding a destruc-

7. e.g., “Bug in sendmail allows unauthorized root access.”

tive Trojan Horse to the previous example.

regarding access limitations. The “objects as files” approach requires that
the rules be enforced by the file system in a more decentralized manner;
the strength of the decentralized implementation is harder to assess.

Confinement mechanisms have been proposed, and in some cases
implemented, using both approaches [36] [42]. The “objects as files”
approach has prevailed in the marketplace, largely because it requires less
specialized hardware support and because it is more amenable to net-
working.

TYPE ENFORCEMENT

Background

The origins of the type enforcement mechanism can be traced back to a
design study for a high-assurance operating system called PSOS [14],
which was based on the use of access tokens called “capabilities.” This
project was continued in a proof-of principle implementation called the
Secure Ada Target [12] [13], which evolved in tum into a system called
LOCK [9]. During this evolution the use of capabilities was dropped
because it required an impractical degree of special hardware support, and
because capability-based designs present difficult implementation prob-
lems since the access limitations in a capability must be revised before it
can be used in a new execution context [24].

In the course of these projects the authors considered many of the then-
prevalent confinement mechanisms, particularly the “integrity” mecha-
nism described in [7]. (The project specifications required conformance to
the TCSEC, so the MMLS mechanism was required.) A shortcoming in
171 noted by the authors was the inability to enforce pipelines, which the
authors had observed arising in a large number of contexts [lo]. The spe-
cific problem which triggered the invention of type enforcement was that
of verifying that a system meet the requirement that sensitivity levels be
accurately included in printed output.

Description

For type enforcement we assign to each object an attribute called its
type, and to each process an attribute called its domain. When a process
seeks access to an object (e.g., “open for read”), a centralized table called
the Domain Definition Table (DDT) is consulted. The DDT includes, con-
ceptually, a row for each type and a column for each domain. The entq at
the intersection of a row and column specifies the maximum access per-
missions that processes in that domain are allowed to have to objects of
that type.

The DDT entries are set prior to system operation. They may be set
according to any criteria the system designers choose to use; unlike
MMLS, there is no need to correspond to any pre-existing structure such
as clearances and classifications. The most commonly used criteria are
the establishment of pipelines and the isolation of highly assured sub-
systems. A fuller treatment of the mechanism appears in [25] .

Uses and Implications

As type enforcement made the transition from principle to practice, it
became apparent that the mechanism could be applied to other confine-
ment problems [11][17][22][39][44], and thus could support a range of
applications [29] [34]. Early investigations showed that the mechanism
overcame the limitations of MMLS [28] and subsequent work reinforced
that conclusion [3].

Pnor to the development of type enforcement, the prevailing view held
that all the security-relevant functionality could be concentrated in a small
“security kemel.” The need for trusted processes was the fiist indication
that the establishment of the TCB perimeter was not as simple as first
thought. LOCK introduced “kemel extensions,” which are security-rele-
vant modules of limited and specialized privilege, whose operations are
constrained by type enforcement [8][9][32][33].

Type enforcing systems have been deployed in two forms. The Secure
Network Server provides network security in a military environment, and
is built on the “objects as memory” model. The Sidewinder* provides net-

8. Sidewinder is a registered trademark of Secure Computing Corpora-
tion.

work security in a commercial environment, and is built on the “objects as
files” model [40]. A UNIX-based prototype system, which implements
the basic principles in a different way, is also under development [3].

The principal practical problem with type enforcement systems centers
on filling in the DDT. The Secure Network Server project
mented a specizlized language for the construction and analysis of DDTs.
A second approach was taken in [3], in which types and domains are
derived from the position of the file in the hierarchy. It is argued that this
approach requires fewer modifications to the base system and is more
consistent with a networked file system.

Assurance

imple-

The ability to reason apriori about system behavior is a major concem
for achieving high levels of certification, and therefore was a major goal
of PSOS and of the projects in which type enforcement was developed
[16][20][21][37]. The assurance activities were integrated with the devel-
opment process, with emphasis
defined by the technical leadership of the project in the following way:
The assurance team and the development team should use the same men-
tal model of the system. In other words, the modular decomposition used
by the developers should be directly reflected in the structure of the argu-
ment seeking to convince people that the system is correctly specified and
implemented [6].

The LOCK assurance effort focused on what it called “journal level
proofs.” These are intended to be at the level of published mathematical
proofs, where the argument is presented at a higher level of abstraction
than that required by the typical mechanical proof checker. The objective
is to produce an assurance argument which can be subjected to peer group
review &5].

An essential part of practical assurance is an approach called “factored
assurance.” Factored assurance involves constructing an assurance argu-
ment in the same form as a mathematical proof, with lemmas that taken
together support the final conclusion. The truth of individual lemmas are
demonstrated in a variety of ways and to different degrees of rigor. In gen-
eral, there are two classes of lemmas. Lemmas of the first class demon-
strate that a module takes positive steps to achieve security (“do the right
thing”). Lemmas in the other class demonstrate that a module is benign,
that is, refrains from performing an actively malicious act (“don’t do the
wrong thiig”).

The following example contains both classes of lemmas. Consider the
problem of designing and verieing a subsystem whose duty it is to place
sensitivity labels on printed output. This subsystem is organized as pipe-
line consisting of three elements: a data preparation module, a labelling
module, and a print module, communicating through intermediate files as
shown in Figure 1. Each of these modules would be executed within a
separate process to enable type enforcement to work and placed in a sepa-
rate domain. The relevant DDT subset is shown in Table l. The assurance
argument is then structured as follows:

on practical assurance. This was

Theorem: Correct labels appear on allprinted output.
Lemma 1: Type enjbrcement works as specified. This lemma appears in

assurance arguments for all subsystems, and therefore is one deserving of
the most stringent assurance steps.

Lemma 2: All dataflows through the labelling moduleprior to being
printed. This lemma is demonstrated by examining the DDT subset given
in the table; note that it is the pattern of blanks (no access) which is the
most important; particularly the fact that the Print Module cannot access
Unlabelled Data.

Lemma 3: The labding module inserts a correct label at all correct
points in the printed output. This “do the right thing” property can be
demonstrated by formal or informal techniques that show correspondence
between specifications and implementations.

Lemma 4: Thepnnt module does not mod@ the labels. This is a “don’t
do the wrong thing” property. Demonstration of this lemma, and others
like it, is complicated by the fact that detailed documentation or source
code for the print module may not be available to the organization doing
the assurance. The assurance argument to this property may therefore
involve such steps as “black box” testing and reverse engineering. Since
these methods are not foolproof, there is a certain degree of risk that a
sophisticated flaw or Trojan Horse may remain.

Comparison wifh Other Mechanisms

Two UNIX commands have effects that might be intimately related
to type enforcement designs. Both setuid and chroot modify the execution
context and can change the process’ view of the file system. The relation-
ship to the setuid mechanism is complex, and is txeated thoroughly in
[38]. The chroot mechanism limits a process to a set of files subordinate
to a designated directory. While the chroot mechanism provides a crude
way of associating a set of files with a process, it does not permit the
enforcement of pipelines or support the kind of assurance steps described
above.

APPLICATION OF WPE ENFORCEMENT TO THE MOBILE AGENT
CONFINEMENT PROBLEM

From the point of view of a designer of a confinement mechanism, the
principal problem posed by mobile agents is the inability to predict in
advance what agents will be loaded and what data it is appropriate for
them to access. This uncertainty precludes static table configurations su‘ch
as described in [101 and [40]. The problem is different than that addressed
in [3], which describes a way in which a type enforcing client or server
can access remote types and domains over a network. In that approach,
software in remote domains remains on the remote machine. In the case
of mobile agents, the software and its associated state moves to the client,
executes, and possibly exports data to the server or another client.

The uncertainty can be resolved by the use of a public registry of
domains in the client machine, and logic that is very similar to that used
by a dynamic program linker b resolve module names at run time.

Domains are, in general, associated with major subystems (e.g., mail,
database, workgroup support, World Wide Web interface, etc.). For each
“public” domain that is permitted to interface with mobile agents the reg-
istry could contain the following information:

Types of objects that the domain is willing to have a mobile agent
read.
Types of objects that the domain is willing to have a mobile agent
Write.
Types of objects that the domain is willing to have a mobile agent
execute (invoke).

This is very similar to the list of entry points in a dynamic program load
module.

Prior to downloading of the mobile agent, the server will interrogate the
registry to determine if there is a domain (subsystem) of interest and, if
so, how the agent should interface with it. If there are more than one type
with the same access (e.g., three types of objects the mobile agent can
write to) then the server needs to recognize the names of these types.
Since the server is dispatching a mobile agent tailored to a specific client
subsystem, this is not an onerous requirement; applications such as Web
browsers can update the registny with type names or aliases as part of the
installation process. The server also needs to transfer to the client the con-
figuration of private types and domains the mobile agent requires for its
safe execution.

Once this information is at the client, the type enforcement mechanism
can configure its internal tables [101 or control language [3] to confine the
mobile agent.

Two observations need to be made about this proposed scheme. The frst
is, of course, that the client system needs to implement type enforcement.
The second is that the server must trust the client but the client does not
need to trust the server. That is, a malicious or malfunctioning client could
interfere with the operation of a mobile agent (or run something else
entirely) and retum misleading results.

CONCLUSION

The confinement problem has become more important since the advent
of mobile agents roaming the Internet. The confinement problem has been
extensively studied and solutions have been proposed, prototyped and
deployed during the past 20 years. At least one solution, type enforce-
ment, contains an avenue for accommodating and confining mobile
agents by simple extensions of the table within its basic confinement
mechanism - the domain definition table.

201

Despite its importance, the confinement problem has been ignored by
many major operating system vendors. Now the increasing awareness of
the potential for abuse and damage by mobile agents should suggest that
more attention be directed towtad confining processes within networked
systems. Before designers and implementors attempt new, unseasoned
approaches to this problem, they should become familiar with existing
approaches and solutions, such as type enforcement.

REFERENCES

[11 Ames, Stanley R., Jr. File Attributes and Their Relationship to Com-
puter Security. Case Western Reserve Univ. Dept. Computing and
Information Sciences. NTIS AD-A002 159,1974.

[2] Anderson, James P. Computer Security Technology Planning Study,

[3] Badger, Lee; Steme, D.F.; Sherman, D.L.; Walker, K.M.; and
V01.1. USAF ESD-TR-73-51, 1972.

Haghighat, S.A. “Practical Domain and Type Enforcement for
UNIX.” Pmc. IEEE Symp. on Security andPrivacy, 1995.

[4] Bell, David E., and La Padula, L. J. Secure Computer Systems: Uni-
j e d Exposition andMultics Interpretation, Mitre Technical Report
MTR-2997, rev 2, March 1976.

[5] Bensoussan, Andre; Clingen, C. T.; and Daley, R. C. “The Multics
Virtual Memory: Concepts and Design”. Communications of the
ACM lj(5), May 1972.

[6] Berg, Helmut K.; Boebert, W. Earl; Franta, W. R.; and Moher, T. G.
Formal Methods of Program Verification and Specijcation. Pren-
tice-Hall Inc., 1982.

tems. Mitre Technical Report MTR-3 153 Rev 1, USAF ESD-TR-76-

[8] Boebert, W. Earl “Constructing an Infosec System Using LOCK Tech-

[9] Boebert, W. Earl “The LOCK Demonstration.” Proc. National Com-

[101 Boebert, W. Earl and Kain, R. Y. “A Practical Alternative to Hierar-

[7] Biba, Kenneth J. Integrity Considerations for Secure Computer Sys-

372, NTIS AD-A039324,1977.

nology.” Proc. National Computer Security Con$. 1988.

puter Security Con$, 1988.

chical Integrity Policies.” Proc. National Computer Security
ConJ, 1985.

tionary Trojan Horse Problem.” Proc. National Computer Security
Con$, 1985.

[I21 Boebert, W. Earl; Kain, R. Y.; and Young, W. D. “Secure Computing:
The Secure Ada Target Approach”. ScientiJic Honeyweller 6(2), Jul.
1985.

“Secure Ada Target: Issues, System Design, and Verification.” Proc.
IEEE Symp. on Security and Privacy, 1985.

System.” Proc. IEEE COMPCON, 1979.

cesses and the Proofs of Theorems and Programs”. Communications
offhe ACM22(5), May 1979.

[16] Fine, Todd; Haigh, J. T.; O’Brien, R. C.; and Toups, D. L. “Noninter-
ference and Unwinding for LOCK.” Proc. IEEE Computer Security
Foundations Workshop, 1989.

[17] Fine, Todd and Minear, S. E. “Assuring Distributed Trusted Mach.”
Proc. IEEE Symp. on Security and Privacy, 1993.

[181 Gasser, Morrie. Building a Secure Computer System. Van Nostrand
Reinhold, 1988.

[19] Gosling, James and McGilton, H. The JavaLanguage Overview. Sun
Microsystems Technical Report, May 1995.

[20] Haigh, J. Thomas; Kemmerer, Richard A.; McHugh, J.; Young, W.
D. “An Experience using Two Covert Channel Analysis Techniques
on a Real System Design”. Proc. IEEE Symp. on Security and Pri-
vacy, 1986.

[21] Haigh, J. Thomas and Young, W. D. “Extending the Non-Interfer-
ence Version of MLS for SAT”. Proc. IEEE Symp. on Securiw and
Privacy, 1986.

Secure Relational Database Model”, In Database Security IV., North-
Holland, 1991.

[l l] Boebert, W. Earl and Ferguson, C. “A Partial Solution to the Discre-

[13] Boebert, W. Earl; Young, W. D.; Kain, R. Y.; and Hansohn, S. A.

[14] Delashmutt, L. F. , Jr. “Steps Toward a Provably Secure Operating

[15] DeMillo, Richard A.; Lipton, R. J.; and Perlis, A. J. “Social Pro-

[22] Haigh, J. Thomas; O’Brien, R.C.; and Thomsen, D.J. “The LDV

[23] Harrison, Michael A.; Ruzzo, W. L.; and Ullman, J. D. “Protection in
operating systems”. Communications of the AOM 19(8), Aug 1976.

[24] Kain, Richard Y. and Landwehr, C.L. “On Access Checking in Capa-
bility-Based Systems”. Proc IEEE Symp. on Security and Privacy,
1986.

Design Approach, Prentice-Hall, 1996.

Information Sciences and Systems, 1971, Reprinted in ACM
SIGOPS Operating Systems Review 8(1), Jan. 1974.

[27] Lee, Theodore M. P. “Using Mandatory Integrity to Enforce ‘Com-
mercial’ Security”. Proc. IEEE symp. on Security andPrivacy, 1988.

[28] McHugh, John. “An EMACS-Based Downgrader for the SAT”.
Proc. National Computer Security Con$, 1985.

[29] O’Brien, Richard and Rogers, C. “Developing Applications on
LOCK”. Proc. National Computer Security Con$, 1991.

[30] Ritchie, Dennis M. and Thompson, K. “The UNIX time-sharing sys-
tem.” Bell System Technical Joumal. 57(6), Jul. 1978.

[3 11 Saltzer, Jerome H. and Schroeder, M. D. “The protection of infoma-
tion in computer systems”. Proceedings ofthe IEEE 63(9), Sep.
1975.

[32] Saydjan, 0. Sami; Beckman, J. M.; and Leaman, J. R. “LOCK Trek:
Navigating Uncharted Space”. Proc. IEEE Symp. on Security and
Privacy, 1989.

“Locking Computers Securely.” Proc. National Computer Seucrity
Conf, 1987.

[34] Schaffer, Mark and Walsh, G. “LOCKhx: On Implementing UNIX
on the LOCK T C B . Proc. National Computer Security Con$, 1988.

[35] Shirley, L. J.; Schell, R. R. “Mechanism Suficiency Validation by
Assignment.” Proc. IEEE Symp. on Security and Privacy, 1981.

[36] Schroeder, Michael D.; Clark, David D.; Saltzer, Jerome H. “The
Multics Kernel Design Project”. ACMSIGOPS Operating Systems
Review 11(5), Nov. 1977.

National Computer Security Con$, 1989.

Enforcement and UNIX Setuid Implementation of Well Formed
Transactions.” Proc. IEEE Computer Security Applications Con$,
1990.

[39] Thomsen, Daniel J., “Role-Based Application Design and Enforce-
ment.” Proc. IFIP Working Group 11.3 in Database Security, 1990.

[40] Thomsen, Daniel J. “Sidewinder: Combining Type Enforcement and
UNIX”. Proc. IEEE Computer Security Applications Con$, 1995.

[41] Weissman, C. “Security Controls in the ADEPT-50 Time-sharing
System.” Proc. AFIPS Fall Joint Computer Con$, 1969.

[42] Wong, Raymond M. “A Comparison of Secure UNIX Operating Sys-
tems”. Proc. IEEE Computer Security Applications Conj, 1990.

[43] Young, Wiliam. D.; Boebert, W. E.; and Kain, R. Y. “Proving a Com-
puter System Secure”. Scientific Honeyweller 6(2), Jul. 1985.

[44] Young, William. D.; Telega, P. A.; and Boebert, W. E. “A Verified
Labeller for the Secure ADA Target”. Proc. National Computer
Security Con$, 1986.

[25] Kain, Richard Y. Advanced Computer Architecture: A Systems

[26] Lampson, Butler W. “Protection”. Proc. 5th Princeton Symp. on

[33] Saydjari, 0. Sami.; Beckman, J. M.; and Leaman, J. R. (NCSC).

[37] Taylor, Tad. “FTLS-Based Security Testing for LOCK.” Proc.

[38] Thomsen, Daniel J. and Haigh, D.T. “A Comparison of Type

FIGURE 1

I Data I
Preparation

Module
Unlabelled

Data

Labelling
Module-

Labelled

Print
Module

To Paper Output

202

Domain
--b

Labelled

203

Data Prep Labelling Print

R+W R

R+W R

