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ABSTRACT 

“Confinement, ” in computer systems, is the ability to limit the amount 
of damage that can be done by malicious or malhnctioning soffware. 
Confinement is a requirement when either security or safety i s a  concern. 

In this paper we demonstrate why the access control mechanisms of 
common operating systems do not constitute a confinement mechanism. 
We describe the early confinement mechanism mandated by the Trusted 
Computing System Evaluation Criteria and note its shortcomings. We 
summarize prior attempts to overcome those shortcomings. We describe 
an alternative confinement mechanism called “type enforcement” that 
was invented by the authors in 1984 and subsequently implemented in 
several secure computers. We show how type enforcement overcomes the 
limitations of the early mechanisms and outline its uses, with special 
emphasis on the way in which the type enforcement mechanism supports 
assurance and safety. We conclude by describing the application of type 
enforcement to the problem of confining the actions of “mobile agents,” 
which are active agents downloaded to client machines from servers. 

INTRODUCTION 

Increases in the networking and sharing among computer systems 
increases one’s exposure to people desiring unauthorized access to data 
stored within the systems. Even before computers were in widespread 
use, many organizations developed rules and regulations that served to 
limit document access and thus to limit the risk of unauthorized modifica- 
tion or revelation of the contents of the documents. A careful analysis 
reveals, however, that several of these schemes that have intuitive appeal 
are, in fact, inherently flawed. 

As they specify systems to be interconnected into the 21st century, con- 
temporary users and designers must become aware of these flaws and of 
modem approaches to guaranteeing that file access is indeed limited 
according to the proscribed policies of the organization. In this paper we 
show how type enforcement mechanisms can satisfy many confinement 
requirements; in particular, they can be used to build firewalls and to con- 
fine the access from applets arriving across the network, 

The paper starts with a review of the confinement problem and the mili- 
tary classification and access limitation rules, illustrating their positive 
and negative aspects. After showing the difficulties and limitations of 
minimal access control schemes, we survey implementations of limited 
access control schemes. Type enforcement approaches to system specifi- 
cation, design and implementation greatly increase the assurance pro- 
vided by the system; we show how this important approach has been used 
to build operational systems and how it can increase one’s level of assur- 
ance that the system does indeed support the organization’s access limita- 
tion policies. We also show how type enforcement can be used to confine, 
in accordance with local access policies, the activities of mobile agents, 
such as applets arriving across the network. 

CONFINEMENT 

Backgmund 

“Confinement,” as used in this paper, is the property of a computer sys- 
tem that permits it to limit the actions of programs in execution. It was 
first discussed in the early 1970’s [26] ,  and consideration of confinement 

mechanisms was a central concem of research into secure computer sys- 
tems, Few, if any, such mechanisms made their way into “mainstream” 
operating systems. 

The importance of confiiement has been heightened recently with the 
advent of “mobile agents” or “applets.” [19] These are objects containing 
executable or interpretable commands and state which are transferred 
from a server to a client and executed locally at the client. The potential 
for abuse or damage as a consequence of malfunction is significant. 

The Discretionary Trojan Horse Attack 

The need for a confinement mechanism first became apparent when 
researchers noted an important inherent limitation of discretionary (or 
identity-based) access control mechanisms [3 11. A simple example of 
such a mechanism has the following elements: 

Each process executing in a system has associated with it the name of 
the user on whose behalf it is executing. As we will see later, the “on 
behalf of’ relationship can become quite complex; for purposes of 
this example, assume a simple multiuser system such as an early 
UNIX’ installation. Users log In and spawn processes as a conse- 
quence of invoking commands from a shell. The system maintains the 
association between the user name and these processes. 
Each file on the system has associated with it an access control list. 
The entries in the list consist of pairs of the form (name, access right) 
where an access right is one or more of a fixed set such as [read, 
write, execute]. 
When a process seeks a particular mode of access to a file (e.g., “open 
for read”) the system searches the access control list for an entry cor- 
responding to the user on whose behalf the process is executin2. It 
then compares the allowed access modes from the access control list 
entry with the requested access mode, and proceeds or aborts as 
appropriate. Thus if a process executing on behalf of user “Smith” 
asked to “open for read” file “foo,” the access control list for “foo” 
would be searched for an entry that read at least (S,mith, read). If such 
an entry was found, the file would be opened; if no such entry was 
found. a well-defmed error response would result. 

The above mechanism appears relatively strong, and in particular 
appeared to its early implementors as being sufficient to protect data in a 
multiuser environment such as VMS, Multics or UNIX. The strength of 
the access control mechanism proved illusory, however, as demonstrated 
by the following attack: 
1. The target of the attack, whom we will call “Smith,” has a file con- 

taining valuable data, which we will call “hotstuff.” Smith sets the 
access control list for “hotstuff to contain a single entry, reading 
(Smith, read/write). This gives the illusion that no other user on the 
system can gain access to “hotstuff.” 

2. The attacker, who we will call “Drake,” first makes a temporary file 
we will call “backpocket.” Drake places two entries in the access con- 
trol list for “backpocket:” (Smith, write) and (Drake, read). Drake 
does not inform Smith of the existence of this file. 

1. UNIX is a registered trademark in the United States and other coun- 
tries, licensed exclusively through WOpen Company Ltd. 

2. So-called “wildcard” characters can be used to eliminate the need to 
denote every allowed user explicitly. 
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3. Drake then constructs an attractive program, which we will call 
“Lure.” Besides its normal function (such as a game or other desirable 
utility) the program contains a malicious subset called a “Trojan 
Horse? The Trojan Horse has the effect of extracting data from “hot- 
stuff’ and copying it to “backpocket.” 

4. Drake then contrives to get Smith to invoke Lure, containing the Tro- 
jan Horse. At this instant, the Trojan Horse is executing on Smith’s 
behalf, and the access control mechanism will therefore permit the 
leak to “backpocket” after going through the following actions and 
checks: 
Trojan Horse: Open “hotstuff for read. Checker: The process exe- 
cutes on behalf of Smith, and access control list entry is found (Smith, 
reaawrite), so permission is granted. 
Trojan Horse: Open “backpocket” for write. Checker: The process 
executes on behalf of Smith, and an access control list entry is found 
(Smith, write), so permission is granted. “Hotstuff‘ may now be COP- 
ied into “backpocket.” 
Drake: Open “backpocket” for read. Checker: The process executes 

on behalf of Drake, an access control list entry is found (Drake, read), 
so permission is granted. 

The net effect is thal there has then been a transfer of data from Smith to 
Drake in violation of thq intent (but not the effect) of Smith’s access con- 
trol list configuration. The transfer occurred for two reasons: the exist- 
ence of a mechanism for sharing program text, and the characteristic of 
the discretionary access control mechanism that a program in execution 
on behalf of an individual inherits the privileges of that individual without 
limitation. 

The reader is encouraged to study this example until it is fully under- 
stood, because the operation of the discretionary Trojan Horse attack is as 
basic to understanding the confinement problem as the use of frequency 
counts is to the understanding of cryptanalysis. 

Introducing mobile agents simply facilitates the invocation of programs 
containing the Trojan Horse. For example, Trojan Horses can be embed- 
ded in “applets” who!je invocation is an invisible side effect of browsing. 
One hopes that browsing appears to be passive and benign with respect to 
data files. However, if, as will usually be the case, the browser is operat- 
ing on behalf of a user who thinks she is protected by a discretionary 
access control mechanism, the “applet” will inherit all the privileges of 
that user and be able to examine, modify, or destroy data at will, contrary 
to the perceived protection. 

MINIMAL MLS CONFINEMENT MECHANISMS 

Background 

When the limitations of the pure discretionary model became apparent4, 
researchers sought other mechanisms to achieve confiement [41]. Since 
the bulk of the work was supported by the Department of Defense, the 
next set of mechanisms centered on the prevalent concepts of data classi- 
fication and personnel clearance. 

To support these mechanisms, additional attributes are required. In addi- 
tion to the access control list described above, data files, or “objects,” in a 
system are assigned a label consisting of two parts: a hierarchical level 
and a set of non-hierarchical categories5. These labels were intended to 
reflect the classification of the data. The hierarchical level was intended 
to reflect the well-known levels of UNCLASSIFIED, CONFIDENTIAL, 
SECRET, and TOP SECRET; the non-hierarchical categories were 
intended to reflect special classifications for highly segregated data, 
where clearance to one such category did not imply clearance to any oth- 
ers. (This can be contrasted with hierarchical levels, where a clearance at 
the SECRET level implies the right to read CONFIDENTIAL data). 

Processes, or “subjects,” were assigned a similarly structured attribute, 
which was intended to reflect the clearance of the person on whose behalf 
the process was executing. 

3 This term was coined by Dan Edwards of NSA. 
4 A discussion of formal limitations of discretionary access con- 

5. Confusingly, the entire field is often referred to as the “sensi- 
trol appears in [23] 

tivity level” 

An algorithm was developed that used the classification and clearance 
attributes to determine the allowed modes of access of a process to an 
object [l] [4]. This algorithm was presumed to be implemented in the 
“Trusted Computing Base,” or “ T C B  [2]. The algorithm was named 
“Mandatory Access Control” because it overrode any permissions that 
may have been given in the access control list. The most prevalent state- 
ment of this algorithm is in the Trusted Computing System Evaluation 
Criteria (TCSEC) which is used as a basis for U.S. Government ratings of 
system security. The wording below describes the mandatory access con- 
trol requirement for class B1 systems; higher classes differ only in detail. 

The TCB shall enforce a mandatory access controlpolicy over all sub- 
jects and storage objects under its control (e.g., processes,jles, seg- 
ments, devices). These subjects and objects shall be assigned sensitivity 
labels that are a combination of hierarchical classification levels and 
non-hierarchical categories, and the labels shall be used as the basis for  
mandatory access control decisions. The TCB shall be able to support iwo 
or more such security levels. (See the mandatory access control guide- 
lines.) The following requirements shall hold for all accesses between 
subjects and objects controlled by the TCB: a subject can read an object 
only ifthe hierarchical classification in the subjectk security level is 
greater than or equal to the hierarchical classification in the objectk 
security level and the non- hierarchical categories in the subjectk secu- 
r i v  level include all the non-hierarchical categories in the objectb secu- 
rity level. A subject can write an object only ifthe hierarchical 
classification in the subject k security level is less than or equal to the 
hierarchical classification in the objectk security level and all the non- 
hierarchical categories in the subjectk security level are included in the 
non- hierarchical categories in the objectk security level. 

The algorithm is also often referred to as the “MLS model” or “MLS 
policy,” for “Multi-Level Security.” We will call this bare-bones algo- 
rithm “Minimal MLS”, or MMILS. 

We encourage readers to observe how the MMLS algorithm stops the 
discretionary Trojan Horse attack described above. Assume that Smith 
has assigned a level of UNCLASSIFIEDISMITHS to “hotstuff,” where 
“UNCLASSIFIED is the hierarchical level and “SMITHS” is the single 
non-hierarchical category used to segregate the data. Assume further that 
Drake cannot initiate a process at a level other than UNCLASSIFIED, not 
being cleared into the category SMITHS. Note how the Minimal MLS 
algorithm prevents a the Trojan Horse from simultaneously being able to 
read “hotstuff’ and write into “backpocket” that Drake could read, no 
matter whether Smith logs in at UNCLASSIFIED or UNCLASSI- 
FIEDISMITHS. A complete explanation appears in [43]. 

Limits of the MMLS Algorithm 

Pipelines: A useful structure that is encountered repeatedly in practical 
secure systems design is a “pipeline.” In its simplest form, a pipeline con- 
sists of a producer process and a consumer process separated by an inter- 
mediate filter or other process whose operation is essential for security. 
The processes are connected by files that act as buffers, and some suitable 
mechanism for synchronization oireads and writes is imposed. An exam- 
ple would be a producer process which is a data preparation subsystem 
and a consumer process which is a network manager. The intermediate 
process would be a cryptographic transform. The pipeline is structured to 
insure that all data is encrypted before it goes out on the network. How- 
ever, if this structure could be bypassed, the data could be sent out on the 
network as cleartext. 

The MMLS algorithm cannot, in and of itself, enforce the pipeline struc- 
ture. Any data which is readable by the cryptographic intermediary is also 
readable by the network manager. Thus a malfunctioning or malicious 
program executing with the privileges of the network manager could 
directly access unencrypted data and place it out on the network. 

Downgrading: The MMLS Algorithm constrains information flow to 
the direction of ever-increasing restrictiveness. Thus data can flow from 
UNCLASSIFIED to UNCLASSIFIEDlSMITHS but not the other way. 
Acknowledgments and other controlled bidirectional trafic is thereby 
restricted, often with severe practical effect. Also, the algorithm does not 
permit downgrading of data even after it has been encrypted, thus forbid- 
ding one of the most basic uses of cryptography. 

Data Integrity: The MMLS algorithm permits processes to write into 
files they cannot read. As a consequence, the algorithm in and of itself 
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cannot prevent a Trojan Horse from altering or destroying data6. 

impose any control on “execute” access. Thus, in the absence of other 
controls, it permits any data file to be executed. It further permits pro- 
grams to access datcr unrelated to the program’s stated purpose, thus facil- 
itating Trojan Horses. 

“On BehalfOf’: The MMLS algorithm requires that the label of each 
process be derived from the privileges (clearance) of the person on whose 
behalf the process is executing. This requirement is difficult if not impos- 
sible to satisfy in a network environment, as opposed to the single, mul- 
tiuser processing environment which existed at the time of the algorithm’s 
development. In networks it is often quite difficult to determine on whose 
behalf a particular action is being taken. Consider a mail transfer agent, 
which examines email “envelopes” and makes routing and forwarding 
decisions. Is that agent acting on behalf of the local system administrator, 
the mail administrator, the sender of the email, the recipient of the email, 
or some other person? Useful answers are not easily forthcoming. 

The “on behalf of’ requirement, combined with the lack of control of 
execute access, does not support forensic studies. Flaws or vulnerabilities 
are almost always associated with bodies of program text7 A fundamen- 
tal forensic question then is: “What data could this program have 
touched?” This question cannot be easily answered when the Minimal 
MLS algorithm is in effect, because the access is a function of on whose 
behalf the program is being run, not the identity of the program itself. 

Augmented MLS 

Limitations on Execute: The MMLS algorithm does not, in and of itself, 

In the past, many attempts were made to overcome the above limitations 
in MMLS. The downgrade problem was recognized in [4], which intro- 
duced the concept of “trusted processes.” A trusted process has the spe- 
cial privilege of downgrading data; since this privilege is very dangerous, 
trusted processes have to be carefully controlled. No control mechanism 
was specified in [4], and a variety of ad hoc approaches were developed 
as early systems were implemented. 

The next limitation that was addressed was the lack of mechanisms to 
maintain data integrity. A widely-adopted mechanism is described in 171. 
This mechanism involves the assignment of a second attribute, called 
“integrity level,” to objects. These levels have a hierarchical level plus 
non-hierarchical category structure similar to the sensitivity levels 
described above. A second set of rules for access is imposed using the 
principles expounded in [4]. A complete description of system architec- 
ture using sensitivity levels, integrity levels, and associated rules is given 
in [18], which is strongly recommended to anyone wishing to understand 
the rationale behind this class of systems. 

The other limitations ofMMLS have also been addressed. A mechanism 
for controlling execute access is proposed in [35], and a method for mod- 
ifying the mechanism of [7] to permit pipelines is proposed in [27]. 

IMPLEMENTATION OF CONFINEMENT MECHANISMS 

There are two ways of implementing of static storage objects that have 
arisen in operating system design. The first way, implemented most nota- 
bly in the Multics system [5], treats storage as a single homogeneous 
name space. Objects are accessed implicitly by referencing the object 
name in the body of program text. Another way of describing this is that 
all storage in the system appears to programs as local memory. 

The second way, implemented most notably in the UNIX system [30], 
treats storage as named files. Objects are accessed explicitly by operating 
system calls (e.g., -‘open read). Another way of describing this is that 
all storage on the system appears to programs as external files. 

The “objects as memory” approach yields higher-assurance implemen- 
tations of confinement mechanisms because the hardware used to map 
global names to process-local addresses (the “memory management unit” 
or MMU) can be modified to provide continuous enforcement of the rules 
[5 ] ;  since the mechanism resides in a single module, it is easier to con- 
vince people of its functionality and conformance to the system’s policy 

6 The reader is invited to verify this claim by adding a destruc- 

7. e.g., “Bug in sendmail allows unauthorized root access.” 

tive Trojan Horse to the previous example. 

regarding access limitations. The “objects as files” approach requires that 
the rules be enforced by the file system in a more decentralized manner; 
the strength of the decentralized implementation is harder to assess. 

Confinement mechanisms have been proposed, and in some cases 
implemented, using both approaches [36] [42]. The “objects as files” 
approach has prevailed in the marketplace, largely because it requires less 
specialized hardware support and because it is more amenable to net- 
working. 

TYPE ENFORCEMENT 

Background 

The origins of the type enforcement mechanism can be traced back to a 
design study for a high-assurance operating system called PSOS [14], 
which was based on the use of access tokens called “capabilities.” This 
project was continued in a proof-of principle implementation called the 
Secure Ada Target [12] [13], which evolved in tum into a system called 
LOCK [9]. During this evolution the use of capabilities was dropped 
because it required an impractical degree of special hardware support, and 
because capability-based designs present difficult implementation prob- 
lems since the access limitations in a capability must be revised before it 
can be used in a new execution context [24]. 

In the course of these projects the authors considered many of the then- 
prevalent confinement mechanisms, particularly the “integrity” mecha- 
nism described in [7]. (The project specifications required conformance to 
the TCSEC, so the MMLS mechanism was required.) A shortcoming in 
171 noted by the authors was the inability to enforce pipelines, which the 
authors had observed arising in a large number of contexts [lo]. The spe- 
cific problem which triggered the invention of type enforcement was that 
of verifying that a system meet the requirement that sensitivity levels be 
accurately included in printed output. 

Description 

For type enforcement we assign to each object an attribute called its 
type, and to each process an attribute called its domain. When a process 
seeks access to an object (e.g., “open for read”), a centralized table called 
the Domain Definition Table (DDT) is consulted. The DDT includes, con- 
ceptually, a row for each type and a column for each domain. The entq at 
the intersection of a row and column specifies the maximum access per- 
missions that processes in that domain are allowed to have to objects of 
that type. 

The DDT entries are set prior to system operation. They may be set 
according to any criteria the system designers choose to use; unlike 
MMLS, there is no need to correspond to any pre-existing structure such 
as clearances and classifications. The most commonly used criteria are 
the establishment of pipelines and the isolation of highly assured sub- 
systems. A fuller treatment of the mechanism appears in [25 ] .  

Uses and Implications 

As type enforcement made the transition from principle to practice, it 
became apparent that the mechanism could be applied to other confine- 
ment problems [11][17][22][39][44], and thus could support a range of 
applications [29] [34]. Early investigations showed that the mechanism 
overcame the limitations of MMLS [28] and subsequent work reinforced 
that conclusion [3]. 

Pnor to the development of type enforcement, the prevailing view held 
that all the security-relevant functionality could be concentrated in a small 
“security kemel.” The need for trusted processes was the fiist indication 
that the establishment of the TCB perimeter was not as simple as first 
thought. LOCK introduced “kemel extensions,” which are security-rele- 
vant modules of limited and specialized privilege, whose operations are 
constrained by type enforcement [8][9][32][33]. 

Type enforcing systems have been deployed in two forms. The Secure 
Network Server provides network security in a military environment, and 
is built on the “objects as memory” model. The Sidewinder* provides net- 

8. Sidewinder is a registered trademark of Secure Computing Corpora- 
tion. 



work security in a commercial environment, and is built on the “objects as 
files” model [40]. A UNIX-based prototype system, which implements 
the basic principles in a different way, is also under development [3]. 

The principal practical problem with type enforcement systems centers 
on filling in the DDT. The Secure Network Server project 
mented a specizlized language for the construction and analysis of DDTs. 
A second approach was taken in [3], in which types and domains are 
derived from the position of the file in the hierarchy. It is argued that this 
approach requires fewer modifications to the base system and is more 
consistent with a networked file system. 

Assurance 

imple- 

The ability to reason apriori about system behavior is a major concem 
for achieving high levels of certification, and therefore was a major goal 
of PSOS and of the projects in which type enforcement was developed 
[16][20][21][37]. The assurance activities were integrated with the devel- 
opment process, with emphasis 
defined by the technical leadership of the project in the following way: 
The assurance team and the development team should use the same men- 
tal model of the system. In other words, the modular decomposition used 
by the developers should be directly reflected in the structure of the argu- 
ment seeking to convince people that the system is correctly specified and 
implemented [6]. 

The LOCK assurance effort focused on what it called “journal level 
proofs.” These are intended to be at the level of published mathematical 
proofs, where the argument is presented at a higher level of abstraction 
than that required by the typical mechanical proof checker. The objective 
is to produce an assurance argument which can be subjected to peer group 
review &5]. 

An essential part of practical assurance is an approach called “factored 
assurance.” Factored assurance involves constructing an assurance argu- 
ment in the same form as a mathematical proof, with lemmas that taken 
together support the final conclusion. The truth of individual lemmas are 
demonstrated in a variety of ways and to different degrees of rigor. In gen- 
eral, there are two classes of lemmas. Lemmas of the first class demon- 
strate that a module takes positive steps to achieve security (“do the right 
thing”). Lemmas in the other class demonstrate that a module is benign, 
that is, refrains from performing an actively malicious act (“don’t do the 
wrong thiig”). 

The following example contains both classes of lemmas. Consider the 
problem of designing and verieing a subsystem whose duty it is to place 
sensitivity labels on printed output. This subsystem is organized as pipe- 
line consisting of three elements: a data preparation module, a labelling 
module, and a print module, communicating through intermediate files as 
shown in Figure 1. Each of these modules would be executed within a 
separate process to enable type enforcement to work and placed in a sepa- 
rate domain. The relevant DDT subset is shown in Table l. The assurance 
argument is then structured as follows: 

on practical assurance. This was 

Theorem: Correct labels appear on allprinted output. 
Lemma 1: Type enjbrcement works as specified. This lemma appears in 

assurance arguments for all subsystems, and therefore is one deserving of 
the most stringent assurance steps. 

Lemma 2: All dataflows through the labelling moduleprior to being 
printed. This lemma is demonstrated by examining the DDT subset given 
in the table; note that it is the pattern of blanks (no access) which is the 
most important; particularly the fact that the Print Module cannot access 
Unlabelled Data. 

Lemma 3: The labding module inserts a correct label at all correct 
points in the printed output. This “do the right thing” property can be 
demonstrated by formal or informal techniques that show correspondence 
between specifications and implementations. 

Lemma 4: Thepnnt module does not mod@ the labels. This is a “don’t 
do the wrong thing” property. Demonstration of this lemma, and others 
like it, is complicated by the fact that detailed documentation or source 
code for the print module may not be available to the organization doing 
the assurance. The assurance argument to this property may therefore 
involve such steps as “black box” testing and reverse engineering. Since 
these methods are not foolproof, there is a certain degree of risk that a 
sophisticated flaw or Trojan Horse may remain. 

Comparison wifh Other Mechanisms 

Two UNIX commands have effects that might be intimately related 
to type enforcement designs. Both setuid and chroot modify the execution 
context and can change the process’ view of the file system. The relation- 
ship to the setuid mechanism is complex, and is txeated thoroughly in 
[38]. The chroot mechanism limits a process to a set of files subordinate 
to a designated directory. While the chroot mechanism provides a crude 
way of associating a set of files with a process, it does not permit the 
enforcement of pipelines or support the kind of assurance steps described 
above. 

APPLICATION OF WPE ENFORCEMENT TO THE MOBILE AGENT 
CONFINEMENT PROBLEM 

From the point of view of a designer of a confinement mechanism, the 
principal problem posed by mobile agents is the inability to predict in 
advance what agents will be loaded and what data it is appropriate for 
them to access. This uncertainty precludes static table configurations su‘ch 
as described in [ 101 and [40]. The problem is different than that addressed 
in [3], which describes a way in which a type enforcing client or server 
can access remote types and domains over a network. In that approach, 
software in remote domains remains on the remote machine. In the case 
of mobile agents, the software and its associated state moves to the client, 
executes, and possibly exports data to the server or another client. 

The uncertainty can be resolved by the use of a public registry of 
domains in the client machine, and logic that is very similar to that used 
by a dynamic program linker b resolve module names at run time. 

Domains are, in general, associated with major subystems (e.g., mail, 
database, workgroup support, World Wide Web interface, etc.). For each 
“public” domain that is permitted to interface with mobile agents the reg- 
istry could contain the following information: 

Types of objects that the domain is willing to have a mobile agent 
read. 
Types of objects that the domain is willing to have a mobile agent 
Write. 
Types of objects that the domain is willing to have a mobile agent 
execute (invoke). 

This is very similar to the list of entry points in a dynamic program load 
module. 

Prior to downloading of the mobile agent, the server will interrogate the 
registry to determine if there is a domain (subsystem) of interest and, if 
so, how the agent should interface with it. If there are more than one type 
with the same access (e.g., three types of objects the mobile agent can 
write to) then the server needs to recognize the names of these types. 
Since the server is dispatching a mobile agent tailored to a specific client 
subsystem, this is not an onerous requirement; applications such as Web 
browsers can update the registny with type names or aliases as part of the 
installation process. The server also needs to transfer to the client the con- 
figuration of private types and domains the mobile agent requires for its 
safe execution. 

Once this information is at the client, the type enforcement mechanism 
can configure its internal tables [ 101 or control language [3] to confine the 
mobile agent. 

Two observations need to be made about this proposed scheme. The frst 
is, of course, that the client system needs to implement type enforcement. 
The second is that the server must trust the client but the client does not 
need to trust the server. That is, a malicious or malfunctioning client could 
interfere with the operation of a mobile agent (or run something else 
entirely) and retum misleading results. 

CONCLUSION 

The confinement problem has become more important since the advent 
of mobile agents roaming the Internet. The confinement problem has been 
extensively studied and solutions have been proposed, prototyped and 
deployed during the past 20 years. At least one solution, type enforce- 
ment, contains an avenue for accommodating and confining mobile 
agents by simple extensions of the table within its basic confinement 
mechanism - the domain definition table. 
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Despite its importance, the confinement problem has been ignored by 
many major operating system vendors. Now the increasing awareness of 
the potential for abuse and damage by mobile agents should suggest that 
more attention be directed towtad confining processes within networked 
systems. Before designers and implementors attempt new, unseasoned 
approaches to this problem, they should become familiar with existing 
approaches and solutions, such as type enforcement. 
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