Delegating Responsibility in Digital Systems

Jed Donnelley and Mark Miller

People delegate responsibility as an everyday part of life. Delegation is such a fundamental part of human society that it’s difficult to imagine our society without delegated responsibility. If digital systems are to do our bidding then it seems only natural that we be able to delegate responsibility within our digital systems. Unfortunately in today’s digital systems we have some mechanisms for delegating permissions and some mechanisms for assigning responsibility, but no mechanisms for delegating responsibility – that is delegating a permission coupled with the assignment of responsibility for using that permission. We explore the requirements for delegating responsibility in digital systems, discuss these requirements in light of current practice such as manipulation of access control lists, and describe how the delegation of responsibility can be added to systems that permit delegation of simple permissions (object/capability systems) as one of many possible implementation approaches.

The authors represent opposite poles (Miller = language -> OS -> network = Donnelley) of a community that is actively exploring the values that can derive from what’s come to be called the “object/capability” paradigm. This community has waxed and waned and waxed again over many years as part of the larger information technology community, from a start as a seemingly simple concept for controlled sharing in a multiprogramming environment [DVH] this paradigm has ultimately come to be seen as little more than commonly accepted object oriented programming practice. In between, however (mostly between the early 1980s and the early 1990s), the capability paradigm was widely attacked as too laissez faire regarding access control (e.g. [TCSEC, Boebert] and, somewhat paradoxically, as overly controlling in touting Principle Of Least Permission (now commonly refined and referred as the Principle Of Least Authority) access control [Lampson].

The present paper results from a revisit to many of the arguments presented against the object/capability paradigm. It focuses particularly on the criticisms that capabilities flow too freely (Marc Stiegler quipped, “capabilities want to be free”) and can’t be trusted to identify ‘who’ is allowed to do what because delegations can’t be tracked. In this paper we redress this issue by demonstrating that capabilities can be tracked through delegations.

Cooperating Conspirators

One issue that we need to take on before proceeding is what has come to be called the problem of cooperating conspirators. If:

1. Alice has a permission and

2. Alice can communicate with Bob (assume two way communication) and

3. Alice wants to grant Bob access to her permission

then there is nothing any system can do to prevent Alice from granting such access. Alice can simply provide proxy access for Bob. That is Bob can ask Alice to exercise her permission for him, having Alice carry out requests using her permission at Bob’s request.

Such proxy access may not be particularly efficient, but it is available in any case. This is the reason that as early as 1980 we hear of the “Inalienable Right” to communicate “capabilities” (a generic permission) [Managing Domains]. In some sense the object/capability paradigm makes direct (simple, straight forward, perhaps even efficient) what is available in any case. More recent discussion of this issue refers to the “communicating conspirators” problem because it is focusing on the inability of any system to stop such proxy access.

What then about the concern about the ‘loose’ flow of permissions (capabilities) in object/capability systems? What about “loose lips sink ships”? Without detailing any of the many mechanisms available for communicating a permission (a “capability”), generically as:

Alice -> Bob

 \ / (Granovetter diagram)

 \> Carol </

Object capability systems do typically permit direct communication of permissions so that after such a transfer as above, Bob can exercise the permission granted to him by Alice by making requests directly of Carol. If an object/capability system provides a means for Bob to directly access the object supported by Carol after the communication from Alice, then haven’t we lost some control? If Alice was forced to proxy for Bob, then:

A. If at some point we removed Alice’s permission (e.g. we no longer trusted Alice, or perhaps Alice was a process that was destroyed), then Bob’s access goes away, and

B. Every exercise of the permission (access to an object) happens from Alice, so we can hold Alice responsible for any access.

If Bob can exercise the permission by communicating directly with Carol, then it would seem that:

A. Even if we remove Alice’s access, Bob will still have access, and

B. If Bob has the same permission as Alice had, then we may not be able to distinguish between an access made by Bob from one made by Alice (e.g. for auditing purposes).

The above concerns have been swirling in and around the object/capability paradigm for many years. Those defending object/capabilities correctly point out that capabilities can be implemented in such as way that they can be revoked at a later time. This would seem to at least partially address any concerns that we be able to remove Bob’s access when we remove Alice’s access. Of course we may actually want to remove Bob’s access and not Alice’s (e.g. we don’t trust Bob, but despite Alice inappropriately delegating a permission to Bob, we choose to still trust Alice).

